Areas of residential development in the southern Appalachian Mountains are characterized by low riparian zone nitrogen cycling and no increase in soil greenhouse gas emissions
نویسندگان
چکیده
The critical role streamside riparian zones play in mitigating the movement of nitrogen (N) and other elements from terrestrial to aquatic ecosystems could be threatened by residential development in the southern Appalachian Mountains. Many studies have investigated the influence of agriculture on N loading to streams but less is known about the impacts of residential development. Here we consider the dynamics of changing riparian land use in the southern Appalachians that includes increased residential development at the expense of both forests and agriculture. We hypothesized that increased inputs of inorganic N from residential development will increase nitrogen cycling rates relative to forests, thereby preventing terrestrial N retention and increasing soil nitrate losses through leaching. In addition, we hypothesized that such development will increase emissions of N2O, CO2, and CH4, all potent greenhouse gases. We found riparian soil potential N cycling rates as well as N2O and CO2 efflux to be much greater with agricultural land use compared to either forested or residential land use. Our data suggest that residential development of forested riparian ecosystems does not increase N cycling or removal and, thus, might allow for greater potential N leaching into streams. Both agricultural and residential land use exhibited CH4 efflux while forested ecosystems were responsible for CH4 uptake. Overall, regional greenhouse gas emissions are projected to decline as high N2O and CO2 emitting agricultural land is converted to residential use.
منابع مشابه
Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia.
In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (N2O) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and N2O fluxes were 5.8, 2.0, and 76.7 ng N m(-2) S(-1) (1.83, 0.63, and 24.19 kg N ha(-1) y(-1)), respectively. Fluxes...
متن کاملRecovery of nitrogen pools and processes in degraded riparian zones in the southern appalachians.
Establishment of riparian buffers is an effective method for reducing nutrient input to streams. However, the underlying biogeochemical processes are not fully understood. The objective of this 4-yr study was to examine the effects of riparian zone restoration on soil N cycling mechanisms in a mountain pasture previously degraded by cattle. Soil inorganic N pools, fluxes, and transformation mec...
متن کاملNitrogen deposition and cycling across an elevation and vegetation gradient in southern Appalachian forests
We studied nitrogen (N) cycling pools and processes across vegetation and elevation gradients in. the southern Appalachian Mountains in SE USA. Measurements included bulk deposition input, watershed export, throughfall fluxes, litterfall, soil N pools and processes, and soil solution N. N deposition increased with elevation and ranged from 9.5 to 12.4 kg ha-' yr-'. In all sites canopies retaine...
متن کاملA Reactivity Based Emission Inventory for the South Pars and Its Implication for Ozone Pollution Control
The South Pars zone in Iran encompasses the largest gas refineries and petrochemical complexes in the world. In the South Pars zone, elevated concentrations of reactive hydrocarbons co-emitted with nitrogen oxides from industrial facilities lead to substantial ozone production downwind. To understand the role of these emissions on the ozone formation and, to formulate appropriate control st...
متن کاملLinking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities
Wetland ecosystems are important reservoirs of biodiversity and significantly contribute to emissions of the greenhouse gases CO2, N2O, and CH4. High anthropogenic nitrogen (N) inputs from agriculture and fossil fuel combustion have been recognized as a severe threat to biodiversity and ecosystem functioning, such as control of greenhouse gas emissions. Therefore, it is important to understand ...
متن کامل